MO-F-BRB-03: A Method to Assess the Need for Clinical Monte Carlo Dose Calculations for Small Proton Therapy Fields.

نویسندگان

  • M Bueno
  • J Schuemann
  • M Duch
  • H Paganetti
چکیده

PURPOSE Due to multiple Coulomb scattering in complex geometries, small field dosimetry in proton therapy is challenging. Our goal was to define an indicator for the accuracy of dose delivery based on analytical dose calculations in treatment planning systems for small (e.g. radiosurgery) proton therapy fields. METHODS Seven patients whose treatment involved one or more small fields (below ∼3.6cm in diameter) were selected. We developed a fast methodology to quantify the inhomogeneity of the tissue traversed by a single beam using a heterogeneity index (HI). The implementation was based on the dose calculation approach taken by our pencil beam algorithm. Plans created with the treatment planning system were verified against Monte Carlo dose calculations on a field- by-field basis. DVHs were analyzed and differences in the dose to the GTV were assessed. The correlation between the HI-values and the discrepancies between planning system and Monte Carlo in terms of absolute dose to the target was studied. RESULTS Our treatment planning system overestimates the dose within the GTV for very small fields by up to ∼8%, even if proper output factor normalization is done in water. The differences are strongly correlated to HI (Spearman's ρ=0.8, rho<0.0001). More complex heterogeneities within the beam path caused larger errors by the analytical algorithm. With the established correlation a threshold for the HI can be set by choosing a tolerance level. CONCLUSIONS The HI as defined in this study appears to be a good indicator of the accuracy of proton field delivery in terms of GTV prescription dose when small fields are being delivered. Each HI-value was obtained in less than 2 minutes allowing implementation of the HI algorithm in clinical routine. For HI- values exceeding a certain threshold, either a change in beam incidence or a Monte Carlo dose calculation should be considered.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monte Carlo calculations of dose distribution for the treatment of gastric cancer with proton therapy

Proton therapy is a common form of external radiation therapy based on the manipulation of Bragg peak of this beam, it can treat the tumor by delivering high levels of doses to it, while protecting surrounding healthy tissues against radiation. In this work, the dose distribution of proton and secondary particles such as neutrons, photons, electrons and positrons in gastric cancer proton therap...

متن کامل

Dose Calculations for Lung Inhomogeneity in High-Energy Photon Beams and Small Beamlets: A Comparison between XiO and TiGRT Treatment Planning Systems and MCNPX Monte Carlo Code

Introduction Radiotherapy with small fields is used widely in newly developed techniques. Additionally, dose calculation accuracy of treatment planning systems in small fields plays a crucial role in treatment outcome. In the present study, dose calculation accuracy of two commercial treatment planning systems was evaluated against Monte Carlo method. Materials and Methods Siemens Once or linea...

متن کامل

Dose Assessment of Eye and Its Components in Proton Therapy by Monte Carlo Method

Introduction Proton therapy is used to treat malignant tumors such as melanoma inside the eye. Proton particles are adjusted according to various parameters such as tumor size and position and patient’s distance from the proton source. The purpose of this study was to assess absorbed doses in eyes and various tumors found in the area of sclera and choroid and the adjacent tissues in radiotherap...

متن کامل

Assessment of The Relation Between Energy Of Primary Protons And Undesired Neutron Dose During Proton Therapy By Monte Carlo Method

Introduction: High-energy beams of protons offer significant advantages for the treatment of deepseated local tumors. Their physical depth-dose distribution in tissue is characterized by a small entrance dose and a distinct maximum -Bragg peak- near the end of range with a sharp fall-off at the distal edge. Alongside its advantages there are some point that they need to meticul...

متن کامل

A new model for Spread Out Bragg Peak in proton therapy of uveal melanoma

In this research, in order to improve our calculations in treatment planning for proton radiotherapy of ocular melanoma, we improved our human eye phantom planning system in GEANT4 toolkit. Different analytical models have investigated the creating of Spread Out Bragg Peak (SOBP) in the tumor area. Bortfeld’s model is one of the most important analytical methods. Using convolution method, a new...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medical physics

دوره 39 6Part21  شماره 

صفحات  -

تاریخ انتشار 2012